Abstract
The present study evaluated the effect of silica nanoparticle aggregation state on the reflectance and crystallinity of dental composite materials. Two types of silica nanoparticles (ca. 10 nm): Aerosil 200® non-funcionalized and Aerosil DT4® funcionalized with 3-methacryloxypropyltrimethoxysilane. Nanoparticles were dispersed in a monomer mix composed by Urethane Dimethacrylate (UDMA) and Ethylene glycol Dimethacrylate (EGDMA) in a 80:20 mass ratio. The particle size of silica and their aggregation state were determined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing that the Aerosil DT4® has dense aggregates with sizes higher than 1 μm; on the other hand the Aerosil 200® showed a particle gel-like structure. The functionalization degree of the Aerosil DT4® was determined by thermogravimetric analysis (TGA), obtaining a value of 7.57% w/w. The composite materials were evaluated by Differencial Scanning Calorimerty (DSC) to determine their crystallinity. The composite material reinforced by Aerosil DT4® showed lower cristallinity than the system with Aerosil 200® due to higher interaction of the polymeric matrix with the funcionalized surface of the Aerosil DT4®. The effect of the aggregation state of silica nanoparticles on the optical properties of the composite material was determined by reflectance analysis. The Aerosil 200® sample showed a lower degree of nanoparticle aggregation and higher reflectance than the system with Aerosil DT4®. The functionalization of the Aerosil DT4® induced nanoparticle aggregation diminishing the optical properties of the composite material.
Author supplied keywords
Cite
CITATION STYLE
Rodríguez-Quirós, H. A., & Casanova-Yepes, H. F. (2015). Effect of the functionalization of silica nanoparticles as a reinforcing agent on dental composite materials. Revista Facultad de Ingenieria, 1(75), 36–44. https://doi.org/10.17533/udea.redin.n75a05
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.