Dynamic importance sampling for uniformly recurrent markov chains

38Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Importance sampling is a variance reduction technique for efficient estimation of rare-event probabilities by Monte Carlo. In standard importance sampling schemes, the system is simulated using an a priori fixed change of measure suggested by a large deviation lower bound analysis. Recent work, however, has suggested that such schemes do not work well in many situations. In this paper we consider dynamic importance sampling in the setting of uniformly recurrent Markov chains. By "dynamic" we mean that in the course of a single simulation, the change of measure can depend on the outcome of the simulation up till that time. Based on a control-theoretic approach to large deviations, the existence of asymptotically optimal dynamic schemes is demonstrated in great generality. The implementation of the dynamic schemes is carried out with the help of a limiting Bellman equation. Numerical examples are presented to contrast the dynamic and standard schemes. © Institute of Mathematical Statistics, 2005.

Cite

CITATION STYLE

APA

Dupuis, P., & Wang, H. (2005). Dynamic importance sampling for uniformly recurrent markov chains. Annals of Applied Probability, 15(1 A), 1–38. https://doi.org/10.1214/105051604000001016

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free