We provide evidence for the presence of targeting signals in the cytoplasmic, transmembrane, and stem (CTS) regions of Golgi glycosyltransferases that mediate sorting of their intracellular catalytic activity into different functional subcompartmental areas of the Golgi. We have constructed chimeras of human α1,3-fucosyltransferase VI (FT6) by replacement of its CTS region with those of late and early acting Golgi glycosyltransferases and have stably coexpressed these constructs in BHK-21 cells together with the secretory reporter glycoprotein human β-trace protein. The sialyl Lewis X:Lewis X ratios detected in β-trace protein indicate that the CTS regions of the early acting GlcNAc-transferases I (GnT- I) and III (GnT-III) specify backward targeting of the FT6 catalytic domain, whereas the CTS region of the late acting human α1,3-fucosyltransferase VII (FT7) causes forward targeting of the FT6 in vivo activity in the biosynthetic glycosylation pathway. The analysis of the in vivo functional activity of nine different CTS chimeras toward β-trace protein allowed for a mapping of the CTS donor glycosyltransferases within the Golgi/trans-Golgi network: GnT-I < (ST6Gal I, ST3Gal III)< GnT-III < ST8Sia IV < GalT-I < (FT3, FT6) < ST3Gal IV < FT7. The sensitivity or resistance of the donor glycosyltransferases toward intracellular proteolysis is transferred to the chimeric enzymes together with their CTS regions. Apparently, there are at least three different signals contained in the CTS regions of glycosyltransferases mediating: first, their Golgi retention; second, their targeting to specific in vivo functional areas; and third, their susceptibility toward intracellular proteolysis as a tool for the regulation of the intracellular turnover.
CITATION STYLE
Grabenhorst, E., & Conradt, H. S. (1999). The cytoplasmic, transmembrane, and stem regions of glycosyltransferases specify their in vivo functional sublocalization and stability in the Golgi. Journal of Biological Chemistry, 274(51), 36107–36116. https://doi.org/10.1074/jbc.274.51.36107
Mendeley helps you to discover research relevant for your work.