Abstract
Background: Children with attention-deficit hyperactivity disorder (ADHD) exhibit executive function deficits, which can be attributed to a dysfunction in the prefrontal region of the brain. Our study aims to evaluate the alteration of brain activity in children with ADHD during the administration of a go/no-go task using functional near-infrared spectroscopy (fNIRS) in comparison to a control group containing typically developing (TD) children. Methods: 32 children with ADHD and 31 of their TD peers were recruited and asked to perform a go/no-go task while undergoing measurements, with the aim of detecting changes in average oxygenated hemoglobin signaling (Δavg oxy-Hb) via fNIRS in the prefrontal lobe. Results: fNIRS data showed significant differences between the left and right dorsolateral prefrontal cortices, with a lower Δavg oxy-Hb change in the ADHD group compared to the TD group. Conclusion: Our results indicate that brain dysfunction in children with ADHD is related to functional impairments in the dorsolateral prefrontal cortex. The go/no-go task paired with fNIRS represents a useful measurement tool to assess prefrontal brain dysfunction in children struggling with ADHD.
Author supplied keywords
Cite
CITATION STYLE
Wu, T., Liu, X., Cheng, F., Wang, S., Li, C., Zhou, D., & Zhang, W. (2023). Dorsolateral prefrontal cortex dysfunction caused by a go/no-go task in children with attention-deficit hyperactivity disorder: A functional near-infrared spectroscopy study. Frontiers in Neuroscience, 17. https://doi.org/10.3389/fnins.2023.1145485
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.