Computational Thinking is argued to be an essential skill for the workforce of the 21st century. As a skill, Computational Thinking should be taught in all schools, employing computational ideas integrated into other disciplines. Up until now, questions about how Computational Thinking can be effectively taught have been underexplored preventing efforts to cross the large gap between early adopters and the early majority, conceptualized as the Computer Science Education chasm. A promising strategy to cross the chasm is underway in Switzerland. Switzerland recently introduced a national curriculum, called Lehrplan 21, mandating Computer Science Education. This mandate requires the Computer Science education of elementary and middle school students. In 2017, the School of Education of Northwestern Switzerland (PH FHNW), introduced a mandatory pre-service teacher Computer Science Education course, to satisfy this mandate. All the PH FHNW students who study to become elementary school teachers must pass this two-semester course. The first part of this course was taught for the first time in fall of 2017. This paper presents the philosophy of this course and an initial analysis of both qualitative data capturing the students’ perceptions of Computational Thinking and quantitative data describing shifts in students’ skills and attitudes as effect sizes. The data suggest that it is possible to teach a basic understanding of programming to non-self-selected pre-service elementary school teachers.
CITATION STYLE
Lamprou, A., & Repenning, A. (2018). Teaching how to teach computational thinking. In Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE (pp. 69–74). Association for Computing Machinery. https://doi.org/10.1145/3197091.3197120
Mendeley helps you to discover research relevant for your work.