Deuteration around the ultracompact HII region Monoceros R2

29Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Context. The massive star-forming region Monoceros R2 (Mon R2) hosts the closest ultra-compact Hii region, where the photon-dominated region (PDR) between the ionized and molecular gas can be spatially resolved with current single-dish telescopes. Aims. We aim at studying the chemistry of deuterated molecules toward Mon R2 to determine the deuterium fractions around a high-UV irradiated PDR and investigate the chemistry of these species. Methods. We used the IRAM-30 m telescope to carry out an unbiased spectral survey toward two important positions (namely IF and MP2) in Mon R2 at 1, 2, and 3 mm. This spectral survey is the observational basis of our study of the deuteration in this massive star-forming region. Our high spectral resolution observations (~0.25-0.65 km s-1) allowed us to resolve the line profiles of the different species detected. Results. We found a rich chemistry of deuterated species at both positions of Mon R2, with detections of C2D, DCN, DNC, DCO+, D2CO, HDCO, NH2D, and N2D+ and their corresponding hydrogenated species and rarer isotopologs. The high spectral resolution of our observations allowed us to resolve three velocity components: the component at 10 km s-1 is detected at both positions and seems associated with the layer most exposed to the UV radiation from IRS 1; the component at 12 km s-1 is found toward the IF position and seems related to the foreground molecular gas; finally, a component at 8.5 km s-1 is only detected toward the MP2 position, most likely related to a low-UV irradiated PDR. We derived the column density of the deuterated species (together with their hydrogenated counterparts), and determined the deuterium fractions as Dfrac = [XD]/[XH]. The values of Dfrac are around 0.01 for all the observed species, except for HCO+ and N2H+, which have values 10 times lower. The values found in Mon R2 are similar to those measured in the Orion Bar, and are well explained with a pseudo-time-dependent gas-phase model in which deuteration occurs mainly via ion-molecule reactions with H2D+, CH2D+ and C2HD+. Finally, the [H13CN]/[HN13C] ratio is very high (~11) for the 10 km s-1 component, which also agree with our model predictions for an age of ~0.01 to a few 0.1 Myr. Conclusions. The deuterium chemistry is a good tool for studying the low-mass and high-mass star-forming regions. However, while low-mass star-forming regions seem well characterized with Dfrac(N2H+) or Dfrac(HCO+), a more complete chemical modeling is required to date massive star-forming regions. This is due to the higher gas temperature together with the rapid evolution of massive protostars.

Cite

CITATION STYLE

APA

Treviño-Morales, S. P., Pilleri, P., Fuente, A., Kramer, C., Roueff, E., González-García, M., … Viti, S. (2014). Deuteration around the ultracompact HII region Monoceros R2. Astronomy and Astrophysics, 569. https://doi.org/10.1051/0004-6361/201423407

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free