Abstract
Previously inaccessible large S8-corona[n]arene macrocycles (n = 8-12) with alternating aryl and 1,4-C6F4 subunits are easily prepared on up to gram scales, without the need for chromatography (up to 45% yield, 10 different examples) through new high acceleration SNAr substitution protocols (catalytic NR4F in pyridine, R = H, Me, Bu). Macrocycle size and functionality are tunable by precursor and catalyst selection. Equivalent simple NR4F catalysis allows facile late-stage SNAr difunctionalisation of the ring C6F4 units with thiols (8 derivatives, typically 95+% yields) providing two-step access to highly functionalised fluoromacrocycle libraries. Macrocycle host binding supports fluoroaryl catalytic activation through contact ion pair binding of NR4F and solvent inclusion. In the solid-state, solvent inclusion also intimately controls macrocycle conformation and fluorine-fluorine interactions leading to spontaneous self-assembly into infinite columns with honeycomb-like lattices.
Cite
CITATION STYLE
Turley, A. T., Hanson-Heine, M. W. D., Argent, S. P., Hu, Y., Jones, T. A., Fay, M., & Woodward, S. (2022). Catalysis enabled synthesis, structures, and reactivities of fluorinated S8-corona[n]arenes (n = 8-12). Chemical Science, 14(1), 70–77. https://doi.org/10.1039/d2sc05348a
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.