In both human in vitro models and murine in vivo adoptive transfer studies, UV-induced class II MHC+ CD11b+ leukocytes that infiltrate the epidermis appear to mediate UV-induced immunosuppression. In the present study, their role is further probed using an anti-CD11b mAb (clone 5C6), which is effective in vivo in blocking CD11b+ monocyte/macrophage diapedesis into inflammatory lesions. A single exposure, low dose UV protocol (72 mJ/cm2) that resulted in tolerance only when dinitroflurobenzene was applied 48 h later through the UV-irradiated skin, but not through a distant non-UV-irradiated site, was used. In vivo anti-CD11b treatment in non-UV-irradiated mice did not block contact sensitivity responses. However, the ability to induce a primary contact sensitivity response was completely restored in UV-irradiated mice receiving anti-CD11b. This restoration was associated with partial restoration of papillary dermal class II MHC+ NLDC-145- cells. In vivo anti-CD11b treatment also blocked tolerance induction, which was associated with a 50% reduction in the infiltration of class II MHC+ CD11b+ Gr-1+ monocyte/macrophages into UV-irradiated skin. In addition, anti-CD11b treatment partially protected against epidermal UV injury, in that the epidermal structure was better preserved and the keratinocytes were less severely damaged. CD11b+ leukocytes may thus affect UV-irradiated skin through at least two mechanisms: 1) a class II MHC+ CD11b+ Gr-1+ monocyte/macrophage population inducing a state of tolerance to Ag(s) acquired in UV-irradiated skin, and 2) CD11b+ leukocytes capable of inflicting additional injury to both keratinocytes and constitutive APC damaged by UV photons.
CITATION STYLE
Hammerberg, C., Duraiswamy, N., & Cooper, K. D. (1996). Reversal of immunosuppression inducible through ultraviolet-exposed skin by in vivo anti-CD11b treatment. The Journal of Immunology, 157(12), 5254–5261. https://doi.org/10.4049/jimmunol.157.12.5254
Mendeley helps you to discover research relevant for your work.