Genome-wide association with bone mass and geometry in the framingham heart study

218Citations
Citations of this article
125Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Osteoporosis is characterized by low bone mass and compromised bone structure, heritable traits that contribute to fracture risk. There have been no genome-wide association and linkage studies for these traits using high-density genotyping platforms. Methods: We used the Affymetrix 100K SNP GeneChip marker set in the Framingham Heart Study (FHS) to examine genetic associations with ten primary quantitative traits: bone mineral density (BMD), calcaneal ultrasound, and geometric indices of the hip. To test associations with multivariable-adjusted residual trait values, we used additive generalized estimating equation (GEE) and family-based association tests (FBAT) models within each sex as well as sexes combined. We evaluated 70,987 autosomal SNPs with genotypic call rates ≥80%, HWE p ≥ 0.001, and MAF ≥10% in up to 1141 phenotyped individuals (495 men and 646 women, mean age 62.5 yrs). Variance component linkage analysis was performed using 11,200 markers. Results: Heritability estimates for allbone phenotypes were 30-66%. LOD scores ≥3.0 were found on chromosomes 15 (1.5 LOD confidence interval: 51,336,679-58,934,236 bp) and 22 (35,890,398-48,603,847 bp) for femoral shaft section modulus. The ten primary phenotypes had 12 associations with 100K SNPs in GEE models at p < 0.000001 and 2 associations in FBAT models at p < 0.000001. The 25 most significant p-values for GEE and FBAT were all less than 3.5 × 10-6 and 2.5 × 10-5, respectively. Of the 40 top SNPs with the greatest numbers of significantly associated BMD traits (including femoral neck, trochanter, and lumbar spine), one half to two-thirds were in or near genes that have not previously been studied for osteoporosis. Notably, pleiotropic associations between BMD and bone geometric traits were uncommon. Evidence for association (FBAT or GEE p < 0.05) was observed for several SNPs in candidate genes for osteoporosis, such as rs1801133 in MTHFR; rs1884052 and rs3778099 in ESR1; rs4988300 in LRP5; rs2189480 in VDR; rs2075555 in COLIA1; rs10519297 and rs2008691 in CYP19, as well as SNPs in PPARG (rs10510418 and rs2938392) and ANKH (rs2454873 and rs379016). All GEE, FBAT and linkage results are provided as an open-access results resource at http://www.ncbi.nlm.nih.gov/ projects/gap/cgi-bin/study.cgi?id=phs000007. Conclusion: The FHS 100K SNP project offers an unbiased genome-wide strategy to identify new candidate loci and to replicate previously suggested candidate genes for osteoporosis. © 2007 Kiel et al; licensee BioMed Central Ltd.

References Powered by Scopus

Osteoporosis prevention, diagnosis, and therapy

3561Citations
N/AReaders
Get full text

Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures

3189Citations
N/AReaders
Get full text

Osteoporosis I: Epidemiology and outcomes of osteoporotic fractures

3113Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study

586Citations
N/AReaders
Get full text

Multiple genetic loci for bone mineral density and fractures

539Citations
N/AReaders
Get full text

Bone remodelling at a glance

394Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Kiel, D. P., Demissie, S., Dupuis, J., Lunetta, K. L., Murabito, J. M., & Karasik, D. (2007). Genome-wide association with bone mass and geometry in the framingham heart study. BMC Medical Genetics, 8(SUPPL. 1). https://doi.org/10.1186/1471-2350-8-S1-S14

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 45

48%

Researcher 26

28%

Professor / Associate Prof. 21

22%

Lecturer / Post doc 2

2%

Readers' Discipline

Tooltip

Agricultural and Biological Sciences 38

43%

Medicine and Dentistry 33

38%

Biochemistry, Genetics and Molecular Bi... 14

16%

Nursing and Health Professions 3

3%

Article Metrics

Tooltip
Mentions
News Mentions: 1
References: 3

Save time finding and organizing research with Mendeley

Sign up for free