Griffiths and Tenenbaum (2006) asked individuals to make predictions about the duration or extent of everyday events (e.g., cake baking times), and reported that predictions were optimal, employing Bayesian inference based on veridical prior distributions. Although the predictions conformed strikingly to statistics of the world, they reflect averages over many individuals. On the conjecture that the accuracy of the group response is chiefly a consequence of aggregating across individuals, we constructed simple, heuristic approximations to the Bayesian model premised on the hypothesis that individuals have access merely to a sample of k instances drawn from the relevant distribution. The accuracy of the group response reported by Griffiths and Tenenbaum could be accounted for by supposing that individuals each utilize only two instances. Moreover, the variability of the group data is more consistent with this small-sample hypothesis than with the hypothesis that people utilize veridical or nearly veridical representations of the underlying prior distributions. Our analyses lead to a qualitatively different view of how individuals reason from past experience than the view espoused by Griffiths and Tenenbaum.
CITATION STYLE
Mozer, M. C., Pashler, H., & Homaei, H. (2008). Optimal predictions in everyday cognition: The wisdom of individuals or crowds? Cognitive Science, 32(7), 1133–1147. https://doi.org/10.1080/03640210802353016
Mendeley helps you to discover research relevant for your work.