Chemometric approach to find relationships between physiological elements and elements causing toxic effects in herb roots by ICP-MS

10Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper 13 elements, both physiological and causing toxic effects, were determined by inductively coupled plasma mass spectrometry in roots of 26 species of herbs used in Traditional Chinese Medicine. The herbs were purchased from online shop in two batches 1 year apart to verify the variability of elemental content in time. The multivariate statistical methods—multiple regression, canonical variates and interaction effect analysis—were applied to interpret the data and to show the relationships between elements and two batches of herb roots. The maximum permissible concentration of Cd (0.3 mg kg−1) was exceeded in 7 herb roots which makes 13% of all specimens. The multiple regression analysis revealed the significant relationships between elements: Mg with Sr; V with Pb, As and Ba; Mn with Pb; Fe with As and Ba; Co with Ni and Sr, Cu with Pb, Cd and As; Zn with Pb, Cd, As and Ba. The canonical variates analysis showed that the statistical inference should not be based solely on the type of herb or number of batch because of the underlying interaction effects between those two variables that may be a source of variability of the content of determined elements.

Cite

CITATION STYLE

APA

Sajnóg, A., Koko, E., Kayzer, D., & Barałkiewicz, D. (2021). Chemometric approach to find relationships between physiological elements and elements causing toxic effects in herb roots by ICP-MS. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-00019-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free