Stagnant lid convection and the thermal subsidence of sedimentary basins with reference to Michigan

18Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

[i] The thermal subsidence of basins formed above thick continental lithosphère differs from that of young passive margin basins and of young oceanic crust in that stagnant lid convection supplies significant heat flow from the asthenosphere. The lithosphere eventually approaches thermal equilibrium where the convective heat added to its base balances the heat lost by conduction to the surface. This paper presents a simple parameterization that quantifies these effects for modeling basin subsidence. The convective heat flow scales with the current lithosphere thickness squared while the conductive heat flow scales inversely to current lithospheric thickness. The predicted thermal subsidence rate scales to the difference between the conductive and convective heat flows and wanes gradually over hundreds of millions of years. The formalism can be modified to represent thermal subsidence where plume material has ponded within a catchment of locally thinned lithosphere. The base of the plume material forms a stable stratification that suppresses convective heat flow from below while heat continues to conduct to the surface by conduction. The predicted initial thermal subsidence rate scales with the large difference between conductive and zero convective heat flow. It is thus much greater than beneath lithosphere underlain by ordinary asthenosphere for a given amount of total eventual thermal subsidence. The paper compares thermal subsidence predictions from the models with and without plumes with sedimentation data from the Michigan basin. Observed initial Late Cambrian through Lower Devonian sedimentation in the Michigan basin is rapid as expected from the plume model, but the Ordovician sedimentation rate is slower than before and after. It is conceivable that this irregularity in the sedimentation curve is associated with low eustatic sea level and sediment-starved conditions at the basin center in the Ordovician and Early Silurian periods, as opposed to irregular tectonics. Sedimentation poorly resolves a long tail of gradual subsidence that may extend to the present. Copyright 2009 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Sleep, N. H. (2009). Stagnant lid convection and the thermal subsidence of sedimentary basins with reference to Michigan. Geochemistry, Geophysics, Geosystems, 10(12). https://doi.org/10.1029/2009GC002881

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free