Analyzing Electricity Demand in Colombia: A Functional Time Series Approach

5Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

In this work we are interested in analyzing the energy demand in Colombia for a short-term horizon, from a functional data approach. First, we make an exhaustive review of the literature on functional spaces as a potential source of statistical information. It is, of course, a theoretical reinterpretation since in practice the data are elements of a finite-dimensional space; however, very high-frequency data, properly treated, can be viewed as elements of a space of continuous functions. Second, we put such a reinterpretation into practice, by performing a spline-type smoothing of commercial energy demand, based on hourly-daily data. As a result, a function or smooth curve is obtained for each day. Finally, we expose the usefulness of this new approach for statistical analysis, modeling, and projection (or forecasting) of stochastic processes that generate high-frequency random variables.

Cite

CITATION STYLE

APA

Marín, J. B., Marulanda, L. M., & Duque, F. V. (2023). Analyzing Electricity Demand in Colombia: A Functional Time Series Approach. International Journal of Energy Economics and Policy, 13(1), 75–84. https://doi.org/10.32479/ijeep.13728

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free