Abstract
It is reported that 3-phosphoinositide-dependent protein kinase-1 (PDK-1) is activated in a phosphatidylinositol 3,4,5-trisphosphate-dependent manner and phosphorylates Akt, p70S6 kinase, and atypical protein kinase C (PKC), but its function on insulin signaling is still unclear. We cloned a full-length pdk-1 cDNA from a human brain cDNA library, and the adenovirus to overexpress wild type PDK-1 (PDK-1WT) or membrane-targeted PDK-1 (PDK-1CAAX) was constructed. Overexpressed PDK-1WT existed mainly at cytosol, and PDK-1CAAX was located at the plasma membrane. In 3T3-L1 adipocytes, insulin induced mobility shift of PDK-1 protein, but overexpressed PDK-1WT and CAAX were shifted at the basal state. Insulin stimulated tyrosine phosphorylation of PDK-1WT, but PDK-1CAAX was already tyrosine-phosphorylated at the basal state. Overexpression of PDK-1WT led to a full activation of PKCζ/λ without insulin stimulation but showed only the minimum effects to stimulate phosphorylation of Akt and GSK-3. In contrast, the overexpression of PDK-1CAAX caused phosphorylation of Akt and GSK-3 more strongly without insulin stimulation. However, PDK-1CAAX did not affect 2-deoxyglucose uptake and inhibited glycogen synthesis, surprisingly. Finally, PDK-1CAAX expression inhibited insulin-induced ERK1/2 phosphorylation in a dose-dependent manner. Taken together, the translocation of PDK-1 from cytosol to the plasma membrane is critical for Akt and GSK-3 activation. On the other hand, only atypical PKC and Akt activation was insufficient for stimulation of glucose transport, and constitutive activation of Akt-GSK-3 pathway may inhibit glycogen synthesis and MAPK cascade in 3T3-L1 adipocytes.
Cite
CITATION STYLE
Egawa, K., Maegawa, H., Shi, K., Nakamura, T., Obata, T., Yoshizaki, T., … Kashiwagi, A. (2002). Membrane localization of 3-phosphoinositide-dependent protein kinase-1 stimulates activities of AKT and atypical protein kinase C but does not stimulate glucose transport and glycogen synthesis in 3T3-L1 adipocytes. Journal of Biological Chemistry, 277(41), 38863–38869. https://doi.org/10.1074/jbc.M203132200
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.