Grounds for Suspicion: Physics-Based Early Warnings for Stealthy Attacks on Industrial Control Systems

8Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Stealthy attacks on Industrial Control Systems can cause significant damage while evading detection. In this article, instead of focusing on the detection of stealthy attacks, we aim to provide early warnings to operators, in order to avoid physical damage and preserve in advance data that may serve as an evidence during an investigation. We propose a framework to provide grounds for suspicion, i.e., preliminary indicators reflecting the likelihood of success of a stealthy attack. We propose two grounds for suspicion based on the behaviour of the physical process: (i) feasibility of a stealthy attack, and (ii) proximity to unsafe operating regions. We propose a metric to measure grounds for suspicion in real-time and provide soundness principles to ensure that such a metric is consistent with the grounds for suspicion. We apply our framework to Linear Time-Invariant (LTI) systems and formulate the suspicion metric computation as a real-time reachability problem. We validate our framework on a case study involving the benchmark Tennessee-Eastman process. We show through numerical simulation that we can provide early warnings well before a potential stealthy attack can cause damage, while incurring minimal load on the network. Finally, we apply our framework on a use case to illustrate its usefulness in supporting early evidence collection.

Cite

CITATION STYLE

APA

Azzam, M., Pasquale, L., Provan, G., & Nuseibeh, B. (2022). Grounds for Suspicion: Physics-Based Early Warnings for Stealthy Attacks on Industrial Control Systems. IEEE Transactions on Dependable and Secure Computing, 19(6), 3955–3970. https://doi.org/10.1109/TDSC.2021.3113989

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free