Vacuolar H+-ATPase (V-ATPase) binds actin filaments with high affinity (K(d) = 55 nM; Lee, B. S., Gluck, S. L., and Holliday, L. S. (1999) J. Biol. Chem. 274, 29164-29171). We have proposed that this interaction is an important mechanism controlling transport of V-ATPase from the cytoplasm to the plasma membrane of osteoclasts. Here we show that both the B1 (kidney) and B2 (brain) isoforms of the B subunit of V-ATPase contain a microfilament binding site in their amino-terminal domain. In pelleting assays containing actin filaments and partially disrupted V-ATPase, B subunits were found in greater abundance in actin pellets than were other V-ATPase subunits, suggesting that the B subunit contained an F-actin binding site. In overlay assays, biotinylated actin filaments also bound to the B subunit. A fusion protein containing the amino-terminal half of B1 subunit bound actin filaments tightly, but fusion proteins containing the carboxyl-terminal half of B1 subunit, or the full-length E subunit, did not bind F-actin. Fusion proteins containing the amino-terminal 106 amino acids of the B1 isoform or the amino-terminal 112 amino acids of the B2 isoform bound filamentous actin with K(d) values of 130 and 190 nM, respectively, and approached saturation at 1 mol of fusion protein/mol of filamentous actin. The B1 and B2 amino-terminal fusion proteins competed with V-ATPase for binding to filamentous actin. In summary, binding sites for F-actin are present in the amino-terminal domains of both isoforms of the B subunit, and likely are responsible for the interaction between V-ATPase and actin filaments in vivo.
CITATION STYLE
Holliday, L. S., Lu, M., Lee, B. S., Nelson, R. D., Solivan, S., Zhang, L., & Gluck, S. L. (2000). The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. Journal of Biological Chemistry, 275(41), 32331–32337. https://doi.org/10.1074/jbc.M004795200
Mendeley helps you to discover research relevant for your work.