Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications

673Citations
Citations of this article
1.1kReaders
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The detection of double-stranded (ds) DNA by SYBR Green I (SG) is important in many molecular biology methods including gel electrophoresis, dsDNA quantification in solution and real-time PCR. Biophysical studies at defined dye/base pair ratios (dbprs) were used to determine the structure-property relationships that affect methods applying SG. These studies revealed the occurrence of intercalation, followed by surface binding at dbprs above ̃0.15. Only the latter led to a significant increase in fluorescence. Studies with poly(dA) poly(dT)and poly(dG) · poly(dC) homopolymers showed sequence-specific binding of SG. Also, salts had a marked impact on SG fluorescence. We also noted binding of SG to single-stranded (ss) DNA, although SG/ssDNA fluorescence was at least ̃11-fold lower than with dsDNA. To perform these studies, we determined the structure of SG by mass spectrometry and NMR analysis to be [2-[N-(3-dimethylaminopropyl)-N-propylamino]-4-[2,3- dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenyl-quinolinium]. For comparison, the structure of PicoGreen (PG) was also determined and is [2-[N-bis-(3-dimethylaminopropyl)-amino]-4-[2,3-dihydro-3-methyl-(benzo-1, 3-thiazol-2-yl)-methylidene]-1-phenyl-quinolinium]+. These structure-property relationships help in the design of methods that use SG, in particular dsDNA quantification in solution and real-time PCR. © Oxford University Press 2004.

Cite

CITATION STYLE

APA

Zipper, H., Brunner, H., Bernhagen, J., & Vitzthum, F. (2004). Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Research, 32(12). https://doi.org/10.1093/nar/gnh101

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free