Reduced nitrogen allocation to expanding leaf blades suppresses ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis and leads to photosynthetic acclimation to elevated CO2 in rice

12Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Net photosynthetic rate (PN) measured at elevated CO2 concentration (Ce), ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and nitrogen (N) content in rice leaves decreased significantly after exposure to long term Ce. The reduction in PN, Rubisco, and leaf N at Ce was similar for the last fully expanded leaf blade (LFELB) and expanding leaf blade (ELB). Spatial leaf N content in the ELB was highest in the zone of cell division, sharply declined as cell expansion progressed and gradually increased with cell maturation. Maximum reduction in spatial leaf N and Rubisco content was found at Ce only within cell expansion and maturation zones. The spatial leaf N content correlated well with the amount of Rubisco synthesized during leaf expansion, suggesting that N deposition into the expanding leaf blade may be the key for Rubisco synthesis and possibly photosynthetic acclimation to Ce. © 2011 Springer Science+Business Media B.V.

Cite

CITATION STYLE

APA

Seneweera, S. (2011). Reduced nitrogen allocation to expanding leaf blades suppresses ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis and leads to photosynthetic acclimation to elevated CO2 in rice. Photosynthetica, 49(1), 145–148. https://doi.org/10.1007/s11099-011-0006-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free