Deep Reinforcement Learning: A New Beacon for Intelligent Active Flow Control

  • Xie F
  • Zheng C
  • Ji T
  • et al.
N/ACitations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

The ability to manipulate fluids has always been one of the focuses of scientific research and engineering application. The rapid development of machine learning technology provides a new perspective and method for active flow control. This review presents recent progress in combining reinforcement learning with high-dimensional, non-linear, and time-delay physical information. Compared with model-based closed-loop control methods, deep reinforcement learning (DRL) avoids modeling the complex flow system and effectively provides an intelligent end-to-end policy exploration paradigm. At the same time, there is no denying that obstacles still exist on the way to practical application. We have listed some challenges and corresponding advanced solutions. This review is expected to offer a deeper insight into the current state of DRL-based active flow control within fluid mechanics and inspires more non-traditional thinking for engineering.

Cite

CITATION STYLE

APA

Xie, F., Zheng, C., Ji, T., Zhang, X., Bi, R., Zhou, H., & Zheng, Y. (2023). Deep Reinforcement Learning: A New Beacon for Intelligent Active Flow Control. Aerospace Research Communications, 1. https://doi.org/10.3389/arc.2023.11130

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free