A Review of Machine Learning Approaches to Soil Temperature Estimation

25Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

Abstract

Soil temperature is an essential factor for agricultural, meteorological, and hydrological applications. Direct measurement, despite its high accuracy, is impractical on a large spatial scale due to the expensive and time-consuming process. On the other hand, the complex interaction between variables affecting soil temperature, such as topography and soil properties, leads to challenging estimation processes by empirical methods and physical models. Machine learning (ML) approaches gained considerable attention due to their ability to address the limitations of empirical and physical methods. These approaches are capable of estimating the variables of interest using complex nonlinear relationships with no assumptions about data distribution. However, their sensitivity to input data as well as the need for a large amount of training ground truth data limits the application of machine learning approaches. The current paper aimed to provide a review of ML techniques implemented for soil temperature modeling, their challenges, and milestones achieved in this domain.

Cite

CITATION STYLE

APA

Taheri, M., Schreiner, H. K., Mohammadian, A., Shirkhani, H., Payeur, P., Imanian, H., & Cobo, J. H. (2023, May 1). A Review of Machine Learning Approaches to Soil Temperature Estimation. Sustainability (Switzerland). MDPI. https://doi.org/10.3390/su15097677

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free