In order to modify the porous interfacial transition zone (ITZ) microstructure of concrete more efficiently, a method of coating aggregate surfaces by using several nanoparticles was evaluated in this study. The compressive strength, chloride penetration of sound, and pre-loading samples were assessed in relation to the type of coating materials used (slag, nano-CaCO3, and nano-SiO2) and the designed coating thickness (5, 10, and 15 μm). The ITZ microstructure was quantitatively determined via Backscattered electron (BSE) image analysis. Results showed that the overall performance of concrete is highly dependent on the coating materials and the designed coating thickness. Increasing the coating thickness of slag and nano-SiO2 could improve the chloride penetration resistance but decrease the compressive strength. Using nano-CaCO3 to coat the aggregate leads to a significant reduction in the properties of the so-prepared concrete. Though coating inert fine particles around aggregate could disturb the initial particle packing and modify the ITZ, it is not able to improve the overall concrete properties. Coating aggregate could determine the ITZ microstructure, especially within the region that is around 30 μm away from aggregate surface.
CITATION STYLE
Wu, K., Han, H., Xu, L., Yang, X., & De Schutter, G. (2019). Supported ITZ modification efficiencies via surface coating nanoparticles on aggregate and its influence on properties. Materials, 12(21). https://doi.org/10.3390/ma12213541
Mendeley helps you to discover research relevant for your work.