Bacillus sphaericus binary toxin elicits host cell autophagy as a response to intoxication

48Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

Bacillus sphaericus strains that produce the binary toxin (Bin) are highly toxic to Culex and Anopheles mosquitoes, and have been used since the late 1980s as a biopesticide for the control of these vectors of infectious disease agents. The Bin toxin produced by these strains targets mosquito larval midgut epithelial cells where it binds to Cpm1 (Culex pipiens maltase 1) a digestive enzyme, and causes severe intracellular damage, including a dramatic cytoplasmic vacuolation. The intoxication of mammalian epithelial MDCK cells engineered to express Cpm1 mimics the cytopathologies observed in mosquito enterocytes following Bin ingestion: pore formation and vacuolation. In this study we demonstrate that Bin-induced vacuolisation is a transient phenomenon that affects autolysosomes. In addition, we show that this vacuolisation is associated with induction of autophagy in intoxicated cells. Furthermore, we report that after internalization, Bin reaches the recycling endosomes but is not localized either within the vacuolating autolysosomes or within any other degradative compartment. Our observations reveal that Bin elicits autophagy as the cell's response to intoxication while protecting itself from degradation through trafficking towards the recycling pathways. © 2011 Opota et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Cite

CITATION STYLE

APA

Opota, O., Gauthier, N. C., Doye, A., Berry, C., Gounon, P., Lemichez, E., & Pauron, D. (2011). Bacillus sphaericus binary toxin elicits host cell autophagy as a response to intoxication. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0014682

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free