Mechanical properties of atomically thin boron nitride and the role of interlayer interactions

794Citations
Citations of this article
613Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Atomically thin boron nitride (BN) nanosheets are important two-dimensional nanomaterials with many unique properties distinct from those of graphene, but investigation into their mechanical properties remains incomplete. Here we report that high-quality single-crystalline mono- and few-layer BN nanosheets are one of the strongest electrically insulating materials. More intriguingly, few-layer BN shows mechanical behaviours quite different from those of few-layer graphene under indentation. In striking contrast to graphene, whose strength decreases by more than 30% when the number of layers increases from 1 to 8, the mechanical strength of BN nanosheets is not sensitive to increasing thickness. We attribute this difference to the distinct interlayer interactions and hence sliding tendencies in these two materials under indentation. The significantly better interlayer integrity of BN nanosheets makes them a more attractive candidate than graphene for several applications, for example, as mechanical reinforcements.

Cite

CITATION STYLE

APA

Falin, A., Cai, Q., Santos, E. J. G., Scullion, D., Qian, D., Zhang, R., … Li, L. H. (2017). Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications, 8. https://doi.org/10.1038/ncomms15815

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free