Abstract
Plant root-knot nematode disease is a great agricultural problem and commercially available nematicides have the disadvantages of high toxicity and limited usage; thus, it is urgent to develop new nematicides derived from nature substances. In this study, a novel fluorinated derivative was synthesized by modifying chitosan oligosaccharide (COS) using the strategy of multiple functions. The derivatives were characterized by FTIR, NMR, elemental analysis, and TG/DTG. The activity assays show that the derivatives can effectively kill the second instar larvae of Meloidogyne incognita in vitro, among them, chitosan-thiadiazole-trifluorobutene (COSSZFB) perform high eggs hatching inhibitory activity. The derivatives can regulate plant growth (photosynthetic pigment), improve immunity (chitinase and β-1,3-glucanase), and show low cytotoxicity and phytotoxicity. According to the multi-functional activity, the derivatives exhibit a good control effect on plant root-knot nematode disease in vivo. The results demonstrate that the COS derivatives (especially fluorinated derivative) perform multiple activities and show the potential to be further evaluated as nematicides.
Author supplied keywords
Cite
CITATION STYLE
Fan, Z., Qin, Y., Liu, S., Xing, R., Yu, H., & Li, P. (2020). Chitosan oligosaccharide fluorinated derivative control root-knot nematode (Meloidogyne incognita) disease based on the multi-efficacy strategy. Marine Drugs, 18(5). https://doi.org/10.3390/md18050273
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.