Evaluation of carboxamide-type synthetic cannabinoids as CB1/CB2 receptor agonists: difference between the enantiomers

29Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recently, carboxamide-type synthetic cannabinoids have been distributed globally as new psychoactive substances (NPS). Some of these compounds possess asymmetric carbon, which is derived from an amide moiety composed of amino acid derivatives (i.e., amides or esters of amino acids). In this study, we synthesized both enantiomers of synthetic cannabinoids, N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(2-fluorobenzyl)-1H-indazole-3-carboxamide (AB-FUBINACA 2-fluorobenzyl isomer), N-(1-amino-1-oxo-3-phenylpropan-2-yl)-1-(cyclohexylmethyl)-1H-indazole-3-carboxamide (APP-CHMINACA), ethyl [1-(5-fluoropentyl)-1H-indazole-3-carbonyl]valinate (5F-EMB-PINACA), ethyl [1-(4-fluorobenzyl)-1H-indazole-3-carbonyl]valinate (EMB-FUBINACA), and methyl 2-[1-(4-fluorobenzyl)-1H-indole-3-carboxamido]-3,3-dimethylbutanoate (MDMB-FUBICA), which were reported as NPS found in Europe from 2014 to 2015, to evaluate their activities as CB1/CB2 receptor agonists. With the exception of (R) MDMB-FUBICA, all of the tested enantiomers were assumed to be agonists of both CB1 and CB2 receptors, and the EC50 values of the (S)-enantiomers for the CB1 receptors were about five times lower than those of (R)-enantiomers. (R) MDMB-FUBICA was shown to function as an agonist of the CB2 receptor, but lacks CB1 receptor activity. To the best of our knowledge, this is the first report to show that the (R)-enantiomers of the carboxamide-type synthetic cannabinoids have the potency to activate CB1 and CB2 receptors. The findings presented here shed light on the pharmacological properties of these carboxamide-type synthetic cannabinoids in forensic cases.

Cite

CITATION STYLE

APA

Doi, T., Tagami, T., Takeda, A., Asada, A., & Sawabe, Y. (2018). Evaluation of carboxamide-type synthetic cannabinoids as CB1/CB2 receptor agonists: difference between the enantiomers. Forensic Toxicology, 36(1), 51–60. https://doi.org/10.1007/s11419-017-0378-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free