Rho-mediated cytoskeletal rearrangement in response to LPA is functionally antagonized by Rac1 and PIP2

28Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.
Get full text

Abstract

G-protein-coupled receptors signal through Rho to induce actin cytoskeletal rearrangement. We previously demonstrated that thrombin stimulates Rho-dependent process retraction and rounding of 1321N1 astrocytoma cells. Surprisingly, while lysophosphatidic acid (LPA) activated RhoA in 1321N1 cells, it failed to produce cell rounding. Thrombin, unlike LPA, decreased Rac1 activity, and activated (GTPase-deficient) Rac1 inhibited thrombin-stimulated cell rounding, while expression of dominant-negative Rac1 promoted LPA-induced rounding. LPA and thrombin receptors appear to differ in coupling to G i, as LPA but not thrombin-stimulated 1321N1 cell proliferation was pertussis toxin-sensitive. Blocking G, with pertussis toxin enabled LPA to induce cell rounding and to decrease activated Rac1. These data support the hypothesis that Rac1 and Gi activation antagonize cell founding. Thrombin and LPA receptors also differentially activated Gq pathways as thrombin but not LPA increased InsP3 formation and reduced phosphatidylinositol 4,5-bisphosphate (PIP2) levels. Microinjection of the plekstrin homology domain of phospholipase C (PLC)δ1, which binds PIP2, enabled LPA to elicit cell rounding, consistent with a requirement for PIP2 reduction. We suggest that Rho-mediated cytoskeletal responses are enhanced by concomitant reductions in cellular levels of PIP2 and Rac1 activation and thus effected only by G-protein-coupled receptors with appropriate subsets of G protein activation.

Cite

CITATION STYLE

APA

Seasholtz, T. M., Radeff-Huang, J., Sagi, S. A., Matteo, R., Weems, J. M., Cohen, A. S., … Brown, J. H. (2004). Rho-mediated cytoskeletal rearrangement in response to LPA is functionally antagonized by Rac1 and PIP2. Journal of Neurochemistry, 91(2), 501–512. https://doi.org/10.1111/j.1471-4159.2004.02749.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free