Characterization of Porous CuO Films for H2S Gas Sensors

9Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Using a thermal evaporator, various porous Cu films were deposited according to the deposition pressure. CuO films were formed by post heat treatment in the air. Changes in morphological and structural characteristics of films were analyzed using field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Relative density and porosity were quantitatively calculated. CuO films with various pores ranging from 39.4 to 95.2% were successfully manufactured and were applied as gas sensors for H2S detection on interdigitated electrode (IDE) substrate. Resistance change was monitored at 325 °C and an increase in porosity of the film improved the sensor performance. The CuO-10 gas sensor with a high porosity of 95.2% showed a relatively high response (2.7) and a fast recovery time (514 s) for H2S 1.5 ppm. It is confirmed that the porosity of the CuO detection layer had a significant effect on response and recovery time.

Cite

CITATION STYLE

APA

Jung, D., Hwang, S., Kim, H. J., Han, J. H., & Lee, H. N. (2022). Characterization of Porous CuO Films for H2S Gas Sensors. Materials, 15(20). https://doi.org/10.3390/ma15207270

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free