d-Glucuronate and d-Glucuronate Glycal Acceptors for the Scalable Synthesis of d-GlcN-α-1,4-d-GlcA Disaccharides and Modular Assembly of Heparan Sulfate

8Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Reported herein is a scalable chemical synthesis of disaccharide building blocks for heparan sulfate (HS) oligosaccharide assembly. The use of d-glucuronate-based acceptors for dehydrative glycosylation with d-glucosamine partners is explored, enabling diastereoselective synthesis of appropriately protected HS disaccharide building blocks (d-GlcN-α-1,4-d-GlcA) on a multigram scale. Isolation and characterization of key donor (1,2 glycal)- and acceptor (ortho-ester, anhydro)-derived side products ensure methodology improvements to reduce their formation; protecting the d-glucuronate acceptor at the anomeric position with a para-methoxyphenyl unit proves optimal. We also introduce glycal uronate acceptors, showing them to be comparative in reactivity to their pyranuronate counterparts. Taken together, this gram-scale access offers the capability to explore the iterative assembly of defined HS sequences containing the d-GlcN-α-1,4-d-GlcA repeat, highlighted by completing this for two tetrasaccharide syntheses.

Cite

CITATION STYLE

APA

Pongener, I., & Miller, G. J. (2023). d-Glucuronate and d-Glucuronate Glycal Acceptors for the Scalable Synthesis of d-GlcN-α-1,4-d-GlcA Disaccharides and Modular Assembly of Heparan Sulfate. Journal of Organic Chemistry, 88(15), 11130–11139. https://doi.org/10.1021/acs.joc.3c01108

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free