Abstract Measurements of vertical shear and strain were acquired from the research platform FLIP during the PATCHEX experiment in October, 1986 (34°N, 127°W). Vertical sheer was shear from two separate Doppler sonar systems. A long-range sonar, with independent estimates every 18 m, sampled from 150–1200 m in depth. A short-range sonar measured fine-scale shear over 150–180 m depth, with 1.5 m vertical resolution. Vertical strain, ∂η/∂z, was estimated from two repeatedly profiling CTDs. These sampled to 560 m once every three minutes. The time variation of the strain field is monitored in both Eulerian (fixed-depth) and semi-Lagrangian (isopycnal-following) reference frames, from 150–406 m depth. Eulerian vertical wavenumber-frequency (m, ω) spectra of vertical shear and strain exhibit a frequency dependency which is a strong function of wavenumber (ω−2–ω0 for m = 0.01–0.3 cpm). In contrast the semi-Lagrangian strain spectrum is more nearly separable in frequency and wavenumber, in closer agreement with t...
CITATION STYLE
Sherman, J. T., & Pinkel, R. (1991). Estimates of the Vertical Wavenumber–Frequency Spectra of Vertical Shear and Strain. Journal of Physical Oceanography, 21(2), 292–303. https://doi.org/10.1175/1520-0485(1991)021<0292:eotvws>2.0.co;2
Mendeley helps you to discover research relevant for your work.