Abstract
Most mobile apps today require access to remote services, and many of them also require users to be authenticated in order to use their services. To ensure the security between the client app and the remote service, app developers often use cryptographic mechanisms such as encryption (e.g., HTTPS), hashing (e.g., MD5, SHA1), and signing (e.g., HMAC) to ensure the confidentiality and integrity of the network messages. However, these cryptographic mechanisms can only protect the communication security, and server-side checks are still needed because malicious clients owned by attackers can generate any messages they wish. As a result, incorrect or missing server side checks can lead to severe security vulnerabilities including password brute-forcing, leaked password probing, and security access token hijacking. To demonstrate such a threat, we present AUTOFORGE, a tool that can automatically forge valid request messages from the client side to test whether the server side of an app has ensured the security of user accounts with sufficient checks. To enable these security tests, a fundamental challenge lies in how to forge a valid cryptographically consistent message such that it can be consumed by the server. We have addressed this challenge with a set of systematic techniques, and applied them to test the server side implementation of 76 popular mobile apps (each of which has over 1,000,000 installs). Our experimental results show that among these apps, 65 (86%) of their servers are vulnerable to password brute-forcing attacks, all (100%) are vulnerable to leaked password probing attacks, and 9 (12%) are vulnerable to Facebook access token hijacking attacks.
Cite
CITATION STYLE
Zuo, C., Wang, W., Wang, R., & Lin, Z. (2016). Automatic Forgery of Cryptographically Consistent Messages to Identify Security Vulnerabilities in Mobile Services. In 23rd Annual Network and Distributed System Security Symposium, NDSS 2016. The Internet Society. https://doi.org/10.14722/ndss.2016.23146
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.