Climate change projections of terrestrial primary productivity over the Hindu Kush Himalayan forests

6Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Increasing atmospheric carbon dioxide concentration [CO2] caused by anthropogenic activities has triggered a requirement to predict the future impact of [CO2] on forests. The Hindu Kush Himalayan (HKH) region comprises a vast territory including forests, grasslands, farmlands and wetland ecosystems. In this study, the impacts of climate change and land-use change on forest carbon fluxes and vegetation productivity are assessed for HKH using the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS). LPJ-GUESS simulations were driven by an ensemble of three climate models participating in the CMIP5 (Coupled Model Intercomparison Project phase 5) database. The modelled estimates of vegetation carbon (VegC) and terrestrial primary productivity were compared with observation-based estimates. Furthermore, we also explored the net biome productivity (NBP) and its components over HKH for the period 1851-2100 under the future climate scenarios RCP2.6 and RCP8.5. A reduced modelled NBP (reduced C sink) is observed from 1986-2015 primarily due to land-use change. However, an increase in NBP is predicted under RCP2.6 and RCP8.5. The findings of the study have important implications for the management of the HKH region, in addition to informing strategic decision making and land-use planning, and clarifying policy concerns.

Cite

CITATION STYLE

APA

Usman, H., Pugh, T. A. M., Ahlström, A., & Baig, S. (2021). Climate change projections of terrestrial primary productivity over the Hindu Kush Himalayan forests. Earth System Dynamics, 12(3), 857–870. https://doi.org/10.5194/esd-12-857-2021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free