Klasifikasi Mutu Fisik Biji Kopi Beras Robusta menggunakan Pengolahan Citra Digital

  • Putri D
  • Munawar A
  • Nasution I
N/ACitations
Citations of this article
72Readers
Mendeley users who have this article in their library.

Abstract

Abstrak. Standar mutu biji kopi di Indonesia menggunakan sistem nilai cacat yang diatur dalam standar Nasional Indonesia (SNI) 01-2907-2008. Tujuan penelitian ini adalah untuk menentukan mutu kopi beras robusta dengan menggunakan Pengolahan citra digital dan metode Support Vector Machine (SVM) serta untuk mendapatkan tingkat akurasi tertinggi. Linear Discriminant Analysis (LDA) dan Support Vector Machine (SVM) diimplementasikan untuk merancang pengklasifikasian otomatis mutu biji kopi beras robusta. Fitur yang digunakan yaitu fitur warna, fitur tekstur dan fitur bentuk. Berdasarkan hasil klasifikasi menggunakan metode Linear Discriminant Analysis (LDA) untuk mendapatkan fitur terbaik yaitu fitur warna yang terdiri dari  G, B, L*, a*, b*. Selanjutnya fitur bentuk yang terdiri dari area, perimeter. Kemudian tekstur yang terdiri dari energi, kontras, korelasi dan homogeneity.  Metode Support Vector Machine (SVM) mampu mengklasifikasi biji kopi beras robusta dengan tingkat akurasi training sebesar 93.56% dan tingkat akurasi testing sebesar 80.75%. Physical Quality Classification Of Robusta Rice Coffee Beans Using Digital Image ProcessingAbstract. Coffee bean quality standards in Indonesia use the defect value system regulated in the Indonesian National Standard (SNI) 01-2907-2008. The purpose of this study was to determine the quality of robusta rice coffee using digital image processing and the Support Vector Machine (SVM) method and to obtain the highest level of accuracy. Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) were implemented to design an automatic classification of the quality of Robusta coffee beans. The features used are color features, texture features and shape features. Based on the results of the classification using the Linear Discriminant Analysis (LDA) method to get the best features, namely the color features consisting of G, B, L*, a*, b*. Next features a shape consisting of area, perimeter. Then the texture which consists of energy, contrast, correlation and homogeneity. The Support Vector Machine (SVM) method is able to classify Robusta coffee beans with a training accuracy rate of 93.56% and a testing accuracy rate of 80.75%.

Cite

CITATION STYLE

APA

Putri, D. A., Munawar, A. A., & Nasution, I. S. (2022). Klasifikasi Mutu Fisik Biji Kopi Beras Robusta menggunakan Pengolahan Citra Digital. Jurnal Ilmiah Mahasiswa Pertanian, 7(2), 490–498. https://doi.org/10.17969/jimfp.v7i2.19797

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free