Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics

130Citations
Citations of this article
237Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Plants are the ultimate source of iron in our diet, either directly as staple crops and vegetables or indirectly via animal fodder. Increasing the iron concentration of edible parts of plants, known as biofortification, is seen as a sustainable approach to alleviate iron deficiency which is a major global health issue. Advances in sequencing and gene technology are accelerating both forward and reverse genetic approaches. In this review, we summarize recent progress in iron biofortification using conventional plant breeding or transgenics. Interestingly, some of the gene targets already used for transgenic approaches are also identified as genetic factors for high iron in genome-wide association studies. Several quantitative trait loci and transgenes increase both iron and zinc, due to overlap in transporters and chelators for these two mineral micronutrients. Research efforts are predominantly aimed at increasing the total concentration of iron but enhancing its bioavailability is also addressed. In particular, increased biosynthesis of the metal chelator nicotianamine increases iron and zinc levels and improves bioavailability. The achievements to date are very promising in being able to provide sufficient iron in diets with less reliance on meat to feed a growing world population.

Author supplied keywords

Cite

CITATION STYLE

APA

Connorton, J. M., & Balk, J. (2019, July 1). Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics. Plant and Cell Physiology. Oxford University Press. https://doi.org/10.1093/pcp/pcz079

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free