Plant Sterol Ester of α -Linolenic Acid Attenuates Nonalcoholic Fatty Liver Disease by Rescuing the Adaption to Endoplasmic Reticulum Stress and Enhancing Mitochondrial Biogenesis

17Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nonalcoholic fatty liver disease (NAFLD) is becoming more common in the world and is presenting a great challenge concerning prevention and treatment. Plant sterol ester of α-linolenic acid (PS-ALA) has a potential benefit to NAFLD. To examine the effect of PS-ALA on NAFLD, C57BL/6J mice were given a control diet, high fat and high cholesterol diet (HFD), and HFD plus 2% PS, 1.3% ALA, or 3.3% PS-ALA for 16 weeks. Our results showed that PS-ALA treatment suppressed hepatic steatosis, ameliorated lipid disorder, attenuated inflammatory response, and inhibited oxidative stress. In the molecular level, PS-ALA downregulated high transcriptional and translational levels of endoplasmic reticulum (ER) stress markers (Grp78 and Chop) leading to decreased protein expression of transcription factor and key enzymes involved in de novo lipogenesis (Srebp-1c and Fas) and cholesterol synthesis (Srebp-2 and Hmgcr). In parallel, PS-ALA blocked Nlrp3 activation and reduced release of IL-1β and IL-18 via inhibiting ER stress-induced sensitization of unfolded protein response sensors (Ire1α and Xbp1s). Finally, PS-ALA improved HFD-induced mitochondrial damage and fatty acid accumulation as exhibited by higher protein and mRNA expression of key genes administering mitochondrial biogenesis (Pgc-1α, Nrf1, and Tfam) and fatty acid β-oxidation (Pparα and Cpt1a). In conclusion, our study originally demonstrated that PS-ALA rescued ER stress, enhanced mitochondrial biogenesis, and thus ameliorated NAFLD.

Cite

CITATION STYLE

APA

Han, H., Guo, Y., Li, X., Shi, D., Xue, T., Wang, L., … Zheng, M. (2019). Plant Sterol Ester of α -Linolenic Acid Attenuates Nonalcoholic Fatty Liver Disease by Rescuing the Adaption to Endoplasmic Reticulum Stress and Enhancing Mitochondrial Biogenesis. Oxidative Medicine and Cellular Longevity, 2019. https://doi.org/10.1155/2019/8294141

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free