Brief Bone Morphogenetic Protein 2 Treatment of Glucocorticoid-inhibited MC3T3-E1 Osteoblasts Rescues Commitment-associated Cell Cycle and Mineralization without Alteration of Runx2

57Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Glucocorticoids (GCs) inhibit bone formation in vivo. In MC3T3-E1 osteoblasts, chronic administration of 1 μM dexamethasone (DEX) starting at confluency results in >98% inhibition of bone morphogenetic protein 2 (BMP-2) expression and apatite mineral deposition. Here, it is shown that brief exposure to recombinant human BMP-2 (rhBMP-2), as short as 6 h, is sufficient to induce irreversible commitment to mineralization in DEX-treated cultures. RhBMP-2 dose dependently rescued mineralization but not collagen accumulation in DEX-inhibited cultures. The selective restoration of mineralization was evident in the higher mineral to matrix ratios of DEX/rhBMP-2 co-treated cultures compared with control. We tested the involvement of the runt-related transcription factor 2 (Runx2) in the DEX inhibition and rhBMP-2 rescue of mineralization. Surprisingly, DEX did not decrease Runx2 DNA binding activity, transactivation, or association with the endogenous osteocalcin gene promoter. Furthermore, the rh-BMP-2 rescue did not involve Runx2 stimulation, suggesting an important role for factors other than Runx2 in BMP-2 action. Finally, we studied the differentiation-related cell cycle, which persists during commitment to mineralization in untreated cultures, but is inhibited along with mineralization in DEX-treated cultures. Although both rhBMP-2 alone and DEX alone were antimitogenic, rhBMP-2 stimulated this cell cycle in DEX-inhibited cultures. In conclusion, brief rhBMP-2 treatment restores mineralization in DEX-inhibited MC3T3-E1 osteoblasts via a mechanism different from Runx2 stimulation. This restoration may be functionally related to the accompanying rescue of the differentiation-related cell cycle. The efficacy of short term BMP-2 treatment supports the potential of short-lived BMP vectors for skeletal therapy in both traditional and gene therapeutic approaches.

Cite

CITATION STYLE

APA

Luppen, C. A., Leclerc, N., Noh, T., Barski, A., Khokhar, A., Boskey, A. L., … Frenkel, B. (2003). Brief Bone Morphogenetic Protein 2 Treatment of Glucocorticoid-inhibited MC3T3-E1 Osteoblasts Rescues Commitment-associated Cell Cycle and Mineralization without Alteration of Runx2. Journal of Biological Chemistry, 278(45), 44995–45003. https://doi.org/10.1074/jbc.M306730200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free