Child Activity Recognition using Deep Learning

  • Suthar B
  • et al.
N/ACitations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The human action recognition is the subject to predicting what an individual is performing based on a trace of their development exploiting a several strategies. Perceiving human activities is an ordinary region of eagerness in view of its various potential applications; though, it is still in start. It is a trending analysis area possessed by the range from dependable automation, medicinal services to developing the smart supervision system. In this work, we are trying to recognize the activity of the child from video dataset using deep learning techniques. The proposed system will help parent to take care of their baby during the job or from anywhere else to know what the baby is doing. This can also be useful to prevent the in-house accident falls of the child and for health monitoring. The activities can be performed by child include sleeping, walking, running, crawling, playing, eating, cruising, clapping, laughing, crying and many more. We are focusing on recognizing crawling, running, sleeping, and walking activities of the child in this study. The offered system gives the best result compared with the existing methods, which utilize sensor-based information. Experimental results proved that the offered deep learning model had accomplished 94.73% accuracy for recognizing the child activity.

Cite

CITATION STYLE

APA

Suthar, B., & Gadhiya, B. (2020). Child Activity Recognition using Deep Learning. International Journal of Engineering and Advanced Technology, 9(5), 364–367. https://doi.org/10.35940/ijeat.e9563.069520

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free