The impact of surficial biochar treatment on acute h2 s emissions during swine manure agitation before pump-out: Proof-of-the-concept

14Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

Acute releases of hydrogen sulfide (H2 S) are of serious concern in agriculture, especially when farmers agitate manure to empty storage pits before land application. Agitation can cause the release of dangerously high H2 S concentrations, resulting in human and animal fatalities. To date, there is no proven technology to mitigate these short-term releases of toxic gas from manure. In our previous research, we have shown that biochar, a highly porous carbonaceous material, can float on manure and mitigate gaseous emissions over extended periods (days–weeks). In this research, we aim to test the hypothesis that biochar can mitigate H2 S emissions over short periods (minutes–hours) during and shortly after manure agitation. The objective was to conduct proof-of-the-concept experiments simulating the treatment of agitated manure. Two biochars, highly alkaline and porous (HAP, pH 9.2) made from corn stover and red oak (RO, pH 7.5), were tested. Three scenarios (setups): Control (no biochar), 6 mm, and 12 mm thick layers of biochar were surficially-applied to the manure. Each setup experienced 3 min of manure agitation. Real-time concentrations of H2 S were measured immediately before, during, and after agitation until the concentration returned to the initial state. The results were compared with those of the Control using the following three metrics: (1) the maximum (peak) flux, (2) total emission from the start of agitation until the concentration stabilized, and (3) the total emission during the 3 min of agitation. The Gompertz’s model for determination of the cumulative H2 S emission kinetics was developed. Here, 12 mm HAP biochar treatment reduced the peak (1) by 42.5% (p = 0.125), reduced overall total emission (2) by 17.9% (p = 0.290), and significantly reduced the total emission during 3 min agitation (3) by 70.4%. Further, 6 mm HAP treatment reduced the peak (1) by 60.6%, and significantly reduced overall (2) and 3 min agitation’s (3) total emission by 64.4% and 66.6%, respectively. Moreover, 12 mm RO biochar treatment reduced the peak (1) by 23.6%, and significantly reduced overall (2) and 3 min total (3) emission by 39.3% and 62.4%, respectively. Finally, 6 mm RO treatment significantly reduced the peak (1) by 63%, overall total emission (2) by 84.7%, and total emission during 3 min agitation (3) by 67.4%. Biochar treatments have the potential to reduce the risk of inhalation exposure to H2 S. Both 6 and 12 mm biochar treatments reduced the peak H2 S concentrations below the General Industrial Peak Limit (OSHA PEL, 50 ppm). The 6 mm biochar treatments reduced the H2 S concentrations below the General Industry Ceiling Limit (OSHA PEL, 20 ppm). Research scaling up to larger manure volumes and longer agitation is warranted.

Cite

CITATION STYLE

APA

Chen, B., Koziel, J. A., Białowiec, A., Lee, M., Ma, H., Li, P., … Brown, R. C. (2020). The impact of surficial biochar treatment on acute h2 s emissions during swine manure agitation before pump-out: Proof-of-the-concept. Catalysts, 10(8). https://doi.org/10.3390/catal10080940

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free