Hepatitis B virus (HBV) sequences integrated in the PLC/PRF/5 cell line (Alexander cells), which was derived from a human primary liver carcinoma, were previously extensively studied. Here we describe the analysis of the unoccupied sites of two linearly integrated forms of HBV DNA, AL-14 and AL-26, that were characterized previously. No major cellular DNA rearrangements were seen at the integration sites except for small deletions of host sequences: 2 kilobases of DNA in AL-14 and 17 base pairs (bp) in AL-26. The unoccupied site of AL-26 was found to be missing 182 bp, which previously mapped next to the right end of the integration sites of several independent clones. These were believed to be of cellular origin, but we show here that these 182 bp are in fact from unusual HBV sequences. Surprisingly, a region of this newly detected HBV DNA sequence is more homologous to that of woodchuck HBV DNA. Our analysis shows that the normal counterparts of both AL-14 and AL-26 contain minisatellite-like repetitive sequences. Based on the data presented here and our previous finding of HBV DNA integration at satellite sequences, we propose that genomic simple repetitive sequences are hot spots for HBV DNA integration.
CITATION STYLE
Berger, I., & Shaul, Y. (1987). Integration of hepatitis B virus: analysis of unoccupied sites. Journal of Virology, 61(4), 1180–1186. https://doi.org/10.1128/jvi.61.4.1180-1186.1987
Mendeley helps you to discover research relevant for your work.