Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment

44Citations
Citations of this article
88Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Multidrug-resistant plasmid-carrying bacteria are of particular clinical concern as they could transfer antibiotic resistance genes to other bacterial species. However, little is known whether evolutionary adaptation of plasmid-carrying bacteria after long-term antibiotic exposure could affect their subsequent colonization of the human gut. Herein, we combined a long-term evolutionary model based on Escherichia coli K-12 MG1655 and the multidrug-resistant plasmid RP4 with in vivo colonization experiments in mice. We found that the evolutionary adaptation of plasmid-carrying bacteria to antibiotic exposure facilitated colonization of the murine gut and subsequent plasmid transfer to gut bacteria. The evolved plasmid-carrying bacteria exhibited phenotypic alterations, including multidrug resistance, enhanced bacterial growth and biofilm formation capability and decreased plasmid fitness cost, which might be jointly caused by chromosomal mutations (SNPs in rpoC, proQ, and hcaT) and transcriptional modifications. The upregulated transcriptional genes, e.g., type 1 fimbrial-protein pilus (fimA and fimH) and the surface adhesin gene (flu) were likely responsible for the enhanced biofilm-forming capacity. The gene tnaA that encodes a tryptophanase-catalyzing indole formation was transcriptionally upregulated, and increased indole products participated in facilitating the maximum population density of the evolved strains. Furthermore, several chromosomal genes encoding efflux pumps (acriflavine resistance proteins A and B (acrA, acrB), outer-membrane protein (tolC), multidrug-resistance protein (mdtM), and macrolide export proteins A and B (macA, macB)) were transcriptionally upregulated, while most plasmid-harboring genes (conjugal transfer protein (traF) and (trbB), replication protein gene (trfA), beta-lactamase TEM precursor (blaTEM), aminoglycoside 3'-phosphotransferase (aphA) and tetracycline resistance protein A (tetA)) were downregulated. Collectively, these findings demonstrated that evolutionary adaptation of plasmid-carrying bacteria in an antibiotic-influenced environment facilitated colonization of the murine gut by the bacteria and plasmids.

Cite

CITATION STYLE

APA

Zhang, P., Mao, D., Gao, H., Zheng, L., Chen, Z., Gao, Y., … Ren, H. (2022). Colonization of gut microbiota by plasmid-carrying bacteria is facilitated by evolutionary adaptation to antibiotic treatment. ISME Journal, 16(5), 1284–1293. https://doi.org/10.1038/s41396-021-01171-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free