Abstract
An L-glucose-utilizing bacterium, Paracoccus sp. 43P, was isolated from soil by enrichment cultivation in a minimal medium containing L-glucose as the sole carbon source. In cell-free extracts from this bacterium, NAD +-dependent L-glucose dehydrogenase was detected as having sole activity toward L-glucose. This enzyme, LgdA, was purified, and the lgdA gene was found to be located in a cluster of putative inositol catabolic genes. LgdA showed similar dehydrogenase activity toward scyllo- and myo-inositols. L-Gluconate dehydrogenase activity was also detected in cell-free extracts, which represents the reaction product of LgdA activity toward L-glucose. Enzyme purification and gene cloning revealed that the corresponding gene resides in a nine-gene cluster, the lgn cluster, which may participate in aldonate incorporation and assimilation. Kinetic and reaction product analysis of each gene product in the cluster indicated that they sequentially metabolize L-gluconate to glycolytic intermediates, D-glyceraldehyde-3-phosphate, and pyruvate through reactions of C-5 epimerization by dehydrogenase/reductase, dehydration, phosphorylation, and aldolase reaction, using a pathway similar to L-galactonate catabolism in Escherichia coli. Gene disruption studies indicated that the identified genes are responsible for L-glucose catabolism. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
Cite
CITATION STYLE
Shimizu, T., Takaya, N., & Nakamura, A. (2012). An L-glucose catabolic pathway in paracoccus species 43P. Journal of Biological Chemistry, 287(48), 40448–40456. https://doi.org/10.1074/jbc.M112.403055
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.