Glass fiber (GF) composites are one of the significant challenges in recycling thermoset materials. After pyrolysis, the glass fibers lack sufficient strength and show poor matrix compatibility. Here we have investigated a series of multifunctional silane and silazane agents for surface modification of recycled glass fibers that provide a combination of hydrophobic properties and residual reactive groups on the surface. This allowed testing of interfacial effects from the surface modification as well as a potential synergistic compatibilization using maleated PP (MAPP). The treated GFs were used to prepare new polypropylene (PP) composites by multiple extrusion steps, resulting in a series of composites where the dispersion efficiency was attributed mainly to the surface chemistry and compatibilization effects. The amino-silane modifications of the recycled fibers resulted in further improvements in the mechanical properties of the PP composites in comparison with the hydrophobized GFs. Moreover, synergistic effects from the addition of MAPP were observed with scanning electron microscopy. The results clearly demonstrate that the surface modifications were effective and good alternatives to currently used methods.
CITATION STYLE
Gkaliou, K., & Daugaard, A. E. (2023). Silane and silazane surface modification of recycled glass fibers for polypropylene composites. Journal of Applied Polymer Science, 140(5). https://doi.org/10.1002/app.53388
Mendeley helps you to discover research relevant for your work.