High Strain Rate Deformation Behavior and Recrystallization of Alloy 718

14Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To study the deformation behavior and recrystallization of alloy 718 in annealed and aged state, compression tests were performed using Split-Hopkinson pressure bar (SHPB) at high strain rates (1000 to 3000 s−1), for temperatures between 20 ∘C and 1100 ∘C (293 K to 1373 K). Optical microscope (OM) and electron back-scatter diffraction (EBSD) technique were employed to characterize the microstructural evolution of the alloy. The stress–strain curves show that the flow stress level decreases with increasing temperature and decreasing strain rate. In addition, up to 1000 ∘C, the aged material presents higher strength and is more resistant to deformation than the annealed one, with a yield strength around 200 MPa higher. For both states, dynamic and meta-dynamic recrystallization occurred when the material is deformed at 1000 ∘C and 1100 ∘C, leading to a refinement of the microstructure. As necklace structures were identified, discontinuous recrystallization is considered to be the main recrystallization mechanism. The recrystallization kinetics is faster for higher temperatures, as the fraction of recrystallized grains is higher and the average recrystallized grain size is larger after deformation at 1100 ∘C than after deformation at 1000 ∘C.

Cite

CITATION STYLE

APA

Moretti, M. A., Dalai, B., Åkerström, P., Arvieu, C., Jacquin, D., Lacoste, E., & Lindgren, L. E. (2021). High Strain Rate Deformation Behavior and Recrystallization of Alloy 718. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 52(12), 5243–5257. https://doi.org/10.1007/s11661-021-06463-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free