Robust Power Designing of Supplementary Damping Controller in VSC HVDC System to Improve Energy Conversion Efficiency of Wind Turbine and Power System Stability

2Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Because of low losses and voltage drop, fast control of power, limitless connection distance, and isolation issues, using high-voltage direct-current (HVDC) transmission system is recommended to transfer power in the power systems, including wind farms. This paper aims to propose a supplementary damping controller (SDC) based on the HVDC to improve not only power system dynamic stability but also energy conversion efficiency and torsional vibration damping in the wind power plants (WPPs). When the WPPs are working in power control mode, the active power is set to its reference value, which is extracted from power-speed curve. This paper shows that torsional oscillations associated with the poorly torsional modes can be affected by different operating regions of the power-speed curve of WPP. Therefore, it is essential to employ an SDC to have the optimum energy conversion efficiency in the wind turbine and the most dynamic stability margin in the power system. The SDC is designed using a fractional-order PID controller (FOPID) based on the multiobjective bat-genetic algorithm (MOBGA). The simulation results show that the proposed control strategy effectively works in minimizing the torsional and electromechanical oscillations in power system and optimizing the energy conversion efficiency in the wind turbine.

Cite

CITATION STYLE

APA

Hamidi, A., Beiza, J., Abedinzadeh, T., & Daghigh, A. (2022). Robust Power Designing of Supplementary Damping Controller in VSC HVDC System to Improve Energy Conversion Efficiency of Wind Turbine and Power System Stability. Journal of Electrical and Computer Engineering, 2022. https://doi.org/10.1155/2022/7645777

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free