Viruses activate a genetically conserved cell death pathway in a unicellular organism

86Citations
Citations of this article
82Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Given the importance of apoptosis in the pathogenesis of virus infections in mammals, we investigated the possibility that unicellular organisms also respond to viral pathogens by activating programmed cell death. The M1 and M2 killer viruses of Saccharomyces cerevisiae encode pore-forming toxins that were assumed to kill uninfected yeast cells by a nonprogrammed assault. However, we found that yeast persistently infected with these killer viruses induce a programmed suicide pathway in uninfected (nonself) yeast. The M1 virus-encoded K1 toxin is primarily but not solely responsible for triggering the death pathway. Cell death is mediated by the mitochondrial fission factor Dnm1/Drp1, the K+ channel Tok1, and the yeast metacaspase Yca1/Mca1 encoded by the target cell and conserved in mammals. In contrast, cell death is inhibited by yeast Fis1, a pore-forming outer mitochondrial membrane protein. This virus-host relationship in yeast resembles that of pathogenic human viruses that persist in their infected host cells but trigger programmed death of uninfected cells. © The Rockefeller University Press.

Cite

CITATION STYLE

APA

Ivanovska, I., & Hardwick, J. M. (2005). Viruses activate a genetically conserved cell death pathway in a unicellular organism. Journal of Cell Biology, 170(3), 391–399. https://doi.org/10.1083/jcb.200503069

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free