Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson's disease

112Citations
Citations of this article
159Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Increasing evidence shows that metabolic abnormalities in body fluids are distinguishing features of the pathophysiology of Parkinson's disease. However, a non-invasive approach has not been established in the earliest or pre-symptomatic phases. Here, we report comprehensive double-cohort analyses of the metabolome using capillary electrophoresis/liquid chromatography mass-spectrometry. The plasma analyses identified 18 Parkinson's disease-specific metabolites and revealed decreased levels of seven long-chain acylcarnitines in two Parkinson's disease cohorts (n = 109, 145) compared with controls (n = 32, 45), respectively. Furthermore, statistically significant decreases in five long-chain acylcarnitines were detected in Hoehn and Yahr stage I. Likewise, decreased levels of acylcarnitine(16:0), a decreased ratio of acylcarnitine(16:0) to fatty acid(16:0), and an increased index of carnitine palmitoyltransferase 1 were identified in Hoehn and Yahr stage I of both cohorts, suggesting of initial β-oxidation suppression. Receiver operating characteristic curves produced using 12-14 long-chain acylcarnitines provided a large area of under the curve, high specificity and moderate sensitivity for diagnosing Parkinson's disease. Our data demonstrate that a primary decrement of mitochondrial β-oxidation and that 12-14 long-chain acylcarnitines decreases would be promising diagnostic biomarkers for Parkinson's disease.

Cite

CITATION STYLE

APA

Saiki, S., Hatano, T., Fujimaki, M., Ishikawa, K. I., Mori, A., Oji, Y., … Hattori, N. (2017). Decreased long-chain acylcarnitines from insufficient β-oxidation as potential early diagnostic markers for Parkinson’s disease. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-06767-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free