Experimental measurement of microwave ablation heating pattern and comparison to computer simulations

41Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Introduction: For computational models of microwave ablation (MWA), knowledge of the antenna design is necessary, but the proprietary design of clinical applicators is often unknown. We characterised the specific absorption rate (SAR) during MWA experimentally and compared to a multi-physics simulation. Methods: An infrared (IR) camera was used to measure SAR during MWA within a split ex vivo liver model. Perseon Medical’s short-tip (ST) or long-tip (LT) MWA antenna were placed on top of a tissue sample (n = 6), and microwave power (15 W) was applied for 6 min, while intermittently interrupting power. Tissue surface temperature was recorded via IR camera (3.3 fps, 320 × 240 resolution). SAR was calculated intermittently based on temperature slope before and after power interruption. Temperature and SAR data were compared to simulation results. Results: Experimentally measured SAR changed considerably once tissue temperatures exceeded 100 °C, contrary to simulation results. The ablation zone diameters were 1.28 cm and 1.30 ± 0.03 cm (transverse), and 2.10 cm and 2.66 ± −0.22 cm (axial), for simulation and experiment, respectively. The average difference in temperature between the simulation and experiment were 5.6 °C (ST) and 6.2 °C (LT). Dice coefficients for 1000 W/kg SAR iso-contour were 0.74 ± 0.01 (ST) and 0.77 (± 0.03) (LT), suggesting good agreement of SAR contours. Conclusion: We experimentally demonstrated changes in SAR during MWA ablation, which were not present in simulation, suggesting inaccuracies in dielectric properties. The measured SAR may be used in simplified computer simulations to predict tissue temperature when the antenna geometry is unknown.

Cite

CITATION STYLE

APA

Deshazer, G., Prakash, P., Merck, D., & Haemmerich, D. (2017). Experimental measurement of microwave ablation heating pattern and comparison to computer simulations. International Journal of Hyperthermia, 33(1), 74–82. https://doi.org/10.1080/02656736.2016.1206630

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free