Abstract
In this paper, we study electron radial diffusion coefficients derived from Pc4-Pc5 ultralow frequency (ULF) wave power during the intense geomagnetic storm on 17–18 March 2015. During this storm the population of highly relativistic electrons was depleted within 2 hr of the storm commencement. This radial diffusion, depending upon the availability of source populations, can cause outward radial diffusion of particles and their loss to the magnetosheath, or inward transport and acceleration. Analysis of electromagnetic field measurements from Geostationary Operational Environment Satellite (GOES), Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite, and ground-based magnetometers shows that the main phase storm-specific radial diffusion coefficients do not correspond to statistical estimates. Specifically, during the main phase, the electric diffusion ((Formula presented.)) is reduced, and the magnetic diffusion ((Formula presented.)) is increased, compared to empirical models based on Kp. Contrary to prior results, the main phase magnetic radial diffusion cannot be neglected. The largest discrepancies, and periods of dominance of (Formula presented.) over (Formula presented.), occur during intervals of strongly southward IMF. However, during storm recovery, both magnetic and electric diffusion rates are consistent with empirical estimates. We further verify observationally, for the first time, an energy coherence for both (Formula presented.) and (Formula presented.) where diffusion coefficients do not depend on energy. We show that, at least for this storm, properly characterizing main phase radial diffusion, potentially associated with enhanced ULF wave magnetopause shadowing losses, cannot be done with standard empirical models. Modifications, associated especially with southward IMF, which enhance the effects of (Formula presented.) and introduce larger main phase outward transport losses, are needed.
Author supplied keywords
Cite
CITATION STYLE
Olifer, L., Mann, I. R., Ozeke, L. G., Rae, I. J., & Morley, S. K. (2019). On the Relative Strength of Electric and Magnetic ULF Wave Radial Diffusion During the March 2015 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 124(4), 2569–2587. https://doi.org/10.1029/2018JA026348
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.