Lineage-specific positive selection on ACE2 contributes to the genetic susceptibility of COVID-19

3Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Angiotensin-Converting Enzyme-2 (ACE2) gene, located on Xp22.2, attracts a great deal of attention because the protein it encodes is believed to be the functional cellular receptor for the new coronavirus (SARS-CoV-2). However, recent studies are controversial, especially concerning the intrinsic link between ACE2 diversity and COVID-19 susceptibility. Here, we conduct a population genetic study on ACE2 in 6354 individuals representing 210 present-day populations and 5329 individuals of ancient or archaic groups. We dissected the genetic architecture of ACE2 and identified two major haplogroups (hg) in East Asians, i.e. ACE2-hg1 (43%) and ACE2-hg2 (53%), while other populations harbor more diverse ACE2-hgs. Accordingly, there was a significant loss of ACE2 common variations in East Asians in contrast to the X-chromosome-wide and genome-wide patterns. Notably, association analysis between ACE2-hgs and COVID-19 severity in 1229 Han Chinese individuals with various levels of COVID-19 severity showed a higher risk of ACE2-hg1 (odds ratio = 1.56, P < 0.01) and a lower risk of ACE2-hg2 (odds ratio = 0.65, P < 0.01). Interestingly, ACE2-hg1 is in strong linkage disequilibrium with rs1849863-C, which is an assumed risk factor of elevated plasma ACE2 level and is related to a higher risk of COVID-19 severity, hospitalization and infection. Strikingly, remarkable signatures of positive selection were detected, especially on ACE2-hg2, and were traced back to 100 000 years ago (but rose to a strong level during the Bronze Age, 5000∼3000 years ago, in East Asians). The selection pressures could have stemmed from multiple sources, but pre-COVID-19 viral epidemics and pandemics might have been potential driving forces, which consequently contributed to the genetic susceptibility to COVID-19 within and between populations.

Cite

CITATION STYLE

APA

Pan, Y., Liu, P., Wang, F., Wu, P., Cheng, F., Jin, X., & Xu, S. (2022). Lineage-specific positive selection on ACE2 contributes to the genetic susceptibility of COVID-19. National Science Review, 9(9). https://doi.org/10.1093/nsr/nwac118

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free