With the continual increasing application requirements of broadband vibration energy harvesters (VEHs), many attempts have been made to broaden the bandwidth. As compared to adopted only a single approach, integration of multi-approaches can further widen the operating bandwidth. Here, a novel two-degree-of-freedom cantilever-based vibration triboelectric nanogenerator is proposed to obtain high operating bandwidth by integrating multimodal harvesting technique and inherent nonlinearity broadening behavior due to vibration contact between triboelectric surfaces. A wide operating bandwidth of 32.9 Hz is observed even at a low acceleration of 0.6 g. Meanwhile, the peak output voltage is 18.8 V at the primary resonant frequency of 23 Hz and 1 g, while the output voltage is 14.9 V at the secondary frequency of 75 Hz and 2.5 g. Under the frequencies of these two modes at 1 g, maximum peak power of 43.08 μW and 12.5 μW are achieved, respectively. Additionally, the fabricated device shows good stability, reaching and maintaining its voltage at 8 V when tested on a vacuum compression pump. The experimental results demonstrate the device has the ability to harvest energy from a wide range of low-frequency (<100 Hz) vibrations and has broad application prospects in self-powered electronic devices and systems.
CITATION STYLE
Tang, G., Cheng, F., Hu, X., Huang, B., Xu, B., Li, Z., … Shi, Q. (2019). A two-degree-of-freedom cantilever-based vibration triboelectric nanogenerator for low-frequency and broadband operation. Electronics (Switzerland), 8(12). https://doi.org/10.3390/electronics8121526
Mendeley helps you to discover research relevant for your work.