Tensile Strength Essay Comparing Three Different Platelet-Rich Fibrin Membranes (L-PRF, A-PRF, and A-PRF+): A Mechanical and Structural In Vitro Evaluation

24Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Predictable outcomes intended by the application of PRF (platelet-rich fibrin) derivative membranes have created a lack of consideration for their consistency and functional integrity. This study aimed to compare the mechanical properties through tensile strength and analyze the structural organization among the membranes produced by L-PRF (leukocyte platelet-rich fibrin), A-PRF (advanced platelet-rich fibrin), and A-PRF+ (advanced platelet-rich fibrin plus) (original protocols) that varied in centrifugation speed and time. L-PRF (n = 12), A-PRF (n = 19), and A-PRF+ (n = 13) membranes were submitted to a traction test, evaluating the maximum and average traction. For maximum traction, 0.0020, 0.0022, and 0.0010 N·mm−2 were obtained for A-PRF, A-PRF+, and L-PRF, respectively; regarding the average resistance to traction, 0.0012, 0.0015, and 0.006 N·mm−2 were obtained, respectively (A-PRF+ > A-PRF > L-PRF). For all groups studied, significant results were found. In the surface morphology observations through SEM, the L-PRF matrix showed a highly compact surface with thick fibers present within interfibrous areas with the apparent destruction of red blood cells and leukocytes. The A-PRF protocol showed a dense matrix composed of thin and elongated fibers that seemed to follow a preferential and orientated direction in which the platelets were well-adhered. Porosity was also evident with a large diameter of the interfibrous spaces whereas A-PRF+ was the most porous platelet concentrate with the greatest fiber abundance and cell preservation. Thus, this study concluded that A-PRF+ produced membranes with significant and higher maximum traction results, indicating a better viscoelastic strength when stretched by two opposing forces.

Cite

CITATION STYLE

APA

Simões-Pedro, M., Tróia, P. M. B. P. S., Dos Santos, N. B. M., Completo, A. M. G., Castilho, R. M., & Fernandes, G. V. de O. (2022). Tensile Strength Essay Comparing Three Different Platelet-Rich Fibrin Membranes (L-PRF, A-PRF, and A-PRF+): A Mechanical and Structural In Vitro Evaluation. Polymers, 14(7). https://doi.org/10.3390/polym14071392

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free